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Assuming a model based on permanent dipole-dipole, dispersion, induction and repulsion forces, the 
potential energy of a molecule in a nematic liquid crystal is derived as a function of its orientation. 
Analysis of the temperature variation of the degree of orientational order in p-azoxyanisole (PAA) and 
p-azoxyphenetole (PAP) indicates that the permanent dipole interactions are relatively unimportant. 
Making use of a mean field approximation, a statistical theory of long-range orientational order is 
developed and the thermodynamic properties of the ordered system are derived relative to those of 
the completely disordered one. Application of the theory to PAA and PAP shows conclusively that a 
certain degree of short-range orientational order is present in the liquid phase. Using just three param- 
eters for each compound, viz. the two constants of the potential function and a numerical factor to 
allow for short range order, the following physical properties have been evaluated which are in quan- 
titative agreement with the experimental data: the long-range orientational order parameter, specific 
heat and compressibility as functions of temperature in the liquid crystalline range, the latent heat and 
volume change at the nematic-isotropic transition point. The magnetic birefringence of the liquid phase 
affords an independent estimate of the short range order which supports the previous calculations. 
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Introduction 

The properties of nematic liquid crystals indicate a 
high degree of orientational order of the molecules but 
no translational order. The degree of orientational 
order is conveniently defined by the parameter 

s=-t2(3 cos20 - 1), 

where 0 is the angle which the long axis of the mol- 
ecule makes with the uniaxial direction of the liquid 
crystal (Zwetkoff, 1942). The limits of s are 1 for the 
perfectly ordered crystalline arrangement and 0 for the 
completely disordered isotropic liquid. Experiments re- 
veal that s in the liquid-crystalline phase has an inter- 
mediate value which decreases gradually with rise of 
temperature. At the nematic-isotropic point, a first- 
order transition takes place and s drops catastroph- 
ically to 0. Other properties associated with orienta- 
tional order, such as the specific heat and compress- 
ibility, exhibit anomalies in the neighbourhood of the 
transition. 

The part played by permanent electric dipoles in 
determining liquid crystalline behaviour has been the 
subject of many investigations. Indeed, the first 
attempt to give a theory of the optical anisotropy of 
the liquid crystalline phase was based on permanent 
dipolar interactions (Born, 1916; Born & Stumpf, 
1916). However, the theory predicts that the transition 
from the isotropic to the liquid-crystalline phase takes 
place at the critical temperature corresponding to the 
polarization catastrophe, which, as is well known from 
the work of Onsager (1936), is not expected to occur. 
The early experiments to detect free charges on the 
surface of the liquid crystal, carried out with a view to 
testing Born's dipole theory, yielded negative results 

(Szivessy, 1925, 1926) but the existence of the hys- 
teresis loop and of polarized domains has been re- 
ported recently (Williams, 1963; Elliot & Gibson, 
1965; Kapustin & Vistin, 1965; Heilmeier, 1966). In 
the light of these observations we attempted a semi- 
empirical theory of the birefringence of nematic liquid 
crystals assuming that the interactions are predom- 
inantly dipolar (Chandrasekhar & Krishnamurti, 
1966). The complete theory, taking into account all 
types of interactions, which we shall discuss in this 
paper, proves that this assumption is not valid. More- 
over, chemical evidence seems to be quite conclusive 
that dipoles do not contribute much to the orienta- 
tional potential energy. In particular, the extensive 
studies of Gray (1962, 1967) on mesomorphic behav- 
iour and chemical constitution have shown that sub- 
stituents of widely varying polarities produce only 
minor changes in the thermodynamic properties of this 
phase. 

Maier & Saupe (1958, 1959, 1960) and Saupe & 
Maier (1961) developed a statistical theory of orienta- 
tional order assuming an intermolecular potential 
function based on dispersion forces, which leads to a 
universal curve for s as a function of TV2/TcV 2, where 
T, V are the temperature and molar volume in the 
nematic phase, Tc, Fc the corresponding values at the 
nematic-isotropic transition point. Although the pre- 
dicted variation agrees with the experimental data for 
some compounds, significant deviations from the 
common curve have been observed in many cases and 
it is clear that the theory in its present form cannot be 
expected to give a satisfactory quantitative description 
of the nematic state (Saupe, 1968; see also Chen, 
James & Luckhurst, 1969; Chandrasekhar & Madhu- 
sudana, 1969). 

A C 27A - 1 
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In this paper we develop a theory of nematic liquid 
crystals taking into account permanent dipole--dipole, 
dispersion, induction and repulsion forces. The theory 
reduces to that of Maier & Saupe when the potential 
function is limited to the principal term of the disper- 
sion energy. Some results of the theory have been pub- 
lished earlier (Chandrasekhar, Krishnamurti & Ma- 
dhusudana, 1969; Chandrasekhar & Madhusudana, 
1970) but we give here a more detailed and rigorous 
treatment, and also discuss its application to two 
typical nematic compounds, viz. p-azoxyanisole and 
p-azoxyphenetole. 

The orientational potential energy of the molecule 

Recent X-ray studies (Chistyakov & Chaikovskii, 
1968; Kosterin & Chistyakov, 1968) have established 
that the (positional) molecular distribution function in 
nematic liquid crystals is cylindrically symmetric. If 
C~r~, flr~, ~r~J are the direction cosines of the intermol- 
ecular vector r~ with respect to a space fixed coordinate 
system X Y Z ,  Z being the uniaxiat direction of the 
medium, we may write 

~ri, = ~4 # r4  
2 2 2 2 2 O~riiflri j ~ flrij~2rij etc. --~ ~rljO~rij , 

(1) 

P e r m a n e n t  dipole-dipole  interactions 

We shall assume that the dipole moment of the mol- 
ecule is directed along its long axis. This assumption 
is justifiable since nuclear magnetic resonance (Lipp- 
mann, 1957; see also Maier & Saupe, 1959) indicates 
that the molecule rotates about its long axis, so that 
only the component of the dipole moment along this 
axis is effective. 

The interaction energy between two identical dipoles 
of moment/z is given by 

U/~ ip //2 
= r-l] (e,. ej-3e, ,  e,,, ej. enj), 

where ei, ej and er~j are the unit vectors of the dipoles 
and r~j. respectively. Therefore 

2 

X (O~jO~rlj'JI - ~jt~rll 71- ~) JYrU)] , 

where cqfliyi, ejflj?'j and C ~ r i j f l r i j Y r i j  a r e  the direction 
cosines of e~, ej and erij respectively. Averaging over 
r~j, transforming to polar coordinates, i.e. e=s in  0 
cos ~0, t =  sin 0 sin rp and ?, = cos 0, and averaging over 
rp, the average potential energy per dipole pair making 
angles 0i, 05 is 

U/~ ip = _ / /2  r~ (3~r21j- 1) cos 0, cos 0j, 
o , t  

kl 
- V cos 0~cos 0j (say). (2) 

Since the medium as a whole possesses uniaxial symme- 
try, the same expression is obviousl~ valid even if the 
dipole moment is inclined to the long axis of the mol- 
ecule. 

For a spherically symmetric molecular distribution 
function (3~2~j - 1)=0 and U~ ip vanishes, but if polar- 
ized domains exist, this cannot be the case. 

Dispersion f o r c e s  

Van der Merwe (1966a) has recentl3, used an oscil- 
lator model to derive the expression for the dipole- 
dipole contribution to the dispersion energy between 
a pair of anisotropic molecules possessing cylindrical 
symmetry. Each molecule is associated with three 
mutually perpendicular dipole oscillators so that the 
energy involves nine interactions. We adopt this model 
to evaluate the average dispersion energy between a 
pair of molecules in the nematic assembly. 

The interaction potential energy between two dipole 
oscillators is given by 

q2 
Vii= r--~.3/(r,, r j -  3 r,. eriirj, er,j) , (3) 

where q is the charge, ri and rj are the position vectors 
of the charges with respect to their equilibrium posi- 
tions and erij is the unit vector of r~j. 

Following van der Merwe, we introduce two carte- 
sian coordinate systems, each fixed in one of the pair 
of molecules, so that the axes are directed along the 
unit vectors e u, e2t, e~l and e11, e2j, e3j respectively, the 
3-direction in both cases being fixed along the long axis 
of the molecule. 

Hence (3) can be written as 

q2 
VU:-r31 ~l ~Clm(lt~mJ'm 

where l=  1, 2, 3, m =  1, 2, 3; ( denotes the component 
of the displacement vector r and 

Clm = eu . e m j -  3eu. er~jemj, erij • 

When the molecules are infinitely far apart and in 
their ground states, their energy corresponding to the 
unperturbed state is 

Eoo = ½hv ~ t + hv ±j + ½hv , j + hv x j=  hv , + 2hv ± 

where v, and v± are the frequencies of the oscillators 
parallel and perpendicular to the length of the mol- 
ecule. As the molecules approach each other, the 
system is perturbed owing to the effect of Vw Since Vii 
is an odd function of both (zt and (m~, the first order 
perturbation energy vanishes and the second order per- 
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turbation energy, which is the dispersion energy, turns 
out as 

U ~ i s v ( d ' d ) = -  r~; ni ~.] (E :111 , ] -Eoo)  ' 

where n~ and nj stand for the triplets of quantum states 
of the two oscillators. For a linear harmonic oscillator, 
at most one term survives having a non-zero matrix 
element (01~11)----(2~) -1/2 connecting its ground state 
with its first excited state; all other terms (0[(]n) 
vanish. Here ~ = a/hv, a being the stiffness constant. 

Using the symbols 

(±,  ± ) : ( 8 h v ~  C 9 - ' ,  
(J-, I I)= {4h(v. + v , ) G ~ , } - ' ,  
(11, 11)--(8hv,~,,2) - '  , 

it can be shown that 

u~'~,(d,d)=- -,3[, [(c~, +c~,+ch +c~9 (±,±) 
2 2 2 2 +C~x+C32) I (11, II)1. -I- ( C  13--}- C23  (_1_, I )+Ch 

Averaging over r~j as before, introducing polar coor- 
dinates and averaging over ~0, the average potential 
energy due to the dipole-dipole contribution to the 
dispersion interactions per pair of molecules making 
angles 0i, 0j is 

U ~]~P(d, d)= --  2~rlj l" rl] t 2 1 rlJ 
r H L~ 

4 ) (  t, X . - -  - -  x (xP + ~,~;-~2 +xP) + (97~,- 6~,,~, 
A, II ~Z . J .  

+ + 36GuT, u X1/2 +X~2 18Gu~,u+ l)x~12 2 2 Z,X± 
9 

+(cos 20t+cos  20~) {(9~4-~u 

+ 2 9Guflm + 3?~zu - 2) 
,~3/2 _ Z 3 1 2  

x (  ~- ~ " ) +(9~'"-67"~" +1) 

i 2z,,~_ ) ~ 
X \XII/2..~_.XIL/2 X3_L/2 +9G,~',, 

x ( z P -  :~z,,xi .] 1. +cos~ o, cos~ o, o (-:~O~rl 1 xP+xW ] 
- ( 2i_ ~ 2 2 0,,4 9~,2 2 2 O~rt ]~r t  ] "t- " ~ ' r i ] - -  - 2 [ r t /  - -  180~ r i ] ~ r i ] )  (/~' 31112 

4X ,, X z ) ]  l [kz + k, (cos2 0, 

+ cos ~ 0~) + k~ cos z 0~ cos 20j] (say), (4) 

_qh_[ f ] a/2 
where g = 16re \ m ! , f i s  the oscillator strength, m the 

mass of the electron. We have used the relations 

v, = , etc. where Z is the polarizability• 

Extending this model, van der Merwe (1966b) has 
also evaluated the dipole-quadrupole contribution to 
the dispersion energy. Proceeding along the same lines, 
we have worked out the average energy per pair of 
molecules in a nematic assembly, but the expression is 
so lengthy that we shall not present it in detail. We 
shall merely state that its functional dependence on the 
orientation is represented by the relation 

1 
U~isp(d,q) = VSi3[k3+k'3(cos 2 0I-t-COS201) 

+ k~ COS 2 0 i COS 2 Of"Jr- k 3 " ( c o s  4 0 t + c o s  4 01) 

+k~"' (cos* G cos20j+cos2 G cos4 0j) ] . (5) 

We neglect the quadrupole-quadrupole contribution• 

Induction effect 

u'"~(~tzj) = -  -~- [z,,j(ch)+z.(C~2 + c h ) ]  ; 

similarly, 
2 

u'"~(~m)= - [x, ~(c33)+z 1~(c23 + c ~3)1. 

• r l i n d =  Uind(~l)(,])_{_ u lnd( f l lX . t  ) • . v i i  

it 2 
- -  4 2 2 2 - 2 )  (Z,, +Z±) 2r~, [{(9~.j+ 9~ML,+ 3~.j 

2 2 2 2 + 1809,~..,Xj_} + (cos 20~ + cos 20j){9cx..~.., (X. -XD 

- ( 9Gj  + 9~. ~,/~ r ~, + 3 ~'.~,j -- 2)X ,. + ( 9 ~, .* . -  6 ~,.~. + 1 )Z - } 
4 2 2 + cos20t cos 20s {(9am + 9Gufl , ,  + 3~2u-2) (X, -Z±) 

+ ( 9 ~ u - 1  2 2 2 1) (2' -2X_O}] 8(Xri/~ri ] ~ 6y m + 

1 2 = - - F 2  [k4+k ~(cOs 0/ '~ -COS 2 01) 

+k4 cos 2 0t cos 2 0J (say). (6) 

Repulsion energy 
To evaluate the orientation dependent repulsion 

energy we consider a simplified model consisting of 
identical linear molecules each of which is replaced by 
three centres of repulsion, two near the ends of the 
molecule and one at its centre so that again there will 
be nine interactions per pair of molecules. Most of the 
common nematic substances (e.g. p-azoxyanisole, p- 
azoxyphenetole) have molecules which are very nearly 
symmetrical about the centre and, therefore, we shall as- 
sume that the centres of repulsion near the ends of the 
molecule are identical but different from that at the 
middle. 

We denote the repulsion centres at the middle of the 
molecules i and j by Cat, Cu and those at the ends by 
C2t, C3~ and Czj, C31. Let Cat be chosen as the origin of 
the coordinate system so that Cl tCu=r  , ,  and let 
CuC2~= CuCzj =L.  The coordinates of the six repul- 
sion centres are: 

A C 27A - 1" 
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and 

Cli(0 , 0, 0); C2~(Lo~, Lfl~, LY0; 
C3i(-  L~z~, - Lfl~, - LTO ; 
Cl~(ri~Zr~i, &~ flri~, &JYr~) ; 
Czi(r~o~r~ + L.j ,  r i~r~ + Lfl~, r~yr~ + Lye) 

C3j(r,jo~ri~ -- L~j, r~ flr# -- Lflj, r ijTri~ -- L D ) . 

We represent the centre-centre, end-end and centre- 
end interactions by the interaction constants al,bl; 
a2, b2; and a3, b3 respectively. Therefore, 

U(CuCI~) = bt exp ( -  atr,)  . 

U(C2~C2~) = b2 exp ( -  aE[r~ + 2L 2 -  2L ~ 

x (oqo~ +flifl~ + YY~) + 2Lri~ {°#o(cq--~z~) 

-F ~r i ] (~- -~ l )  "~ Yr#(Yl-- yi)}]1/2) 
{ 2L2 2L 2 _ 

=b2ex p -azri j  1+ ~ r~ Ji 

2L }1/2] 
+ f2 , 

ri 1 

= b a e x p [ - a 2 r i l { l +  L-~jf2+ L2r 2 

L 3 
x ( 1 - f l - 2 x f 2 2 + . . . ) +  r-~-.j ( f l f 2 - f 2 + . . . )  

" }] ...... ~ f , + . . . )  , + r~ ( - ½ + f ' - '  ~- 

where f l  = ~, czio~j and f2 = ~ O~r#(~j-~zO. 

We can similarly work out the other seven terms of 
the interaction energy. Summing all the nine terms, 
expanding the exponentials, averaging over rij and ~0, 
and rearranging terms, it can be shown that the average 
repulsion energy per pair of molecules making angles 
0i, 0j is expressible as 

urep_ 1 [R+R,(cos 2 0i+cos 2 0j) 

-1- R tt cos z 0/; cos 2 0j 21- R tit (cos 4 075 -t- COS 4 0]) 
.ql-R .... (cos 4 075 COS 2 0j -1-COS 2 0~; COS 4 0 j ) - [ - . . . ] .  

(7) 

In general, we may characterize the molecule by 
(2n + 1) centres of repulsion and work out the orienta- 
tional potential energy in an analogous manner. It is 
readily shown that the functional dependence on 0i, 0j 
would still remain the same. We have assumed that 
the average repulsion energy varies as r -lz. 

The total orientational potential energy 
Assuming additivity of pair potentials and neglecting 

correlation effects, the average interaction energy per 
pair of molecules due to all types of forces is obtained 
by adding (2), (4), (5), (6) and (7): 

U a = _  [ ( k2 + k4 ks 
V ~ + Vs/s 

[ k'z + k'4 k'3 
+ \--F2---+ vs/----- r . . . .  

# i t  i t  

[ k2 + k4 ks + 
. - - p 2  ..... + V 8/3 

R) kl 
V 4 + V cos0~cos0j  

RtV 4 )(cos  20t 21-cos 2 0]) 

z,) 
V4 COS 2 01 COS 2 01 

"k;"  R .... 
+ ( - ~ s ~ -  F4) (cos '  O, +cos 4 0,) 

R'"' .)  (COS 40l COS2 O] + COS 20 l COS 40]) ( + \ ~,'-873 V 4 

+ . . . .  ] .  (8) 
1 

The total interaction energy of the molecule i with all 
its neighbours j is therefore 

U~= Y U~j 
] 

= - (Uo+ U1 cos &+ U2 cos 20~ 
--}- U4 cos 40 t - l t - . . . ) ,  

where 

Uo= [~l ( k2+k4  k 3 R 
V~-- + VS,~ ~ ) ]  

k ' "  R ' "  
all- [ 1~ ( V813 V4 ) cos40 ] ]  -[- • • • , 

kl Vx= ~ -V cos 0j, 
1 

\ V 2 + V8/3 V 4 

etc. 

+ k2 + k 4 k 3 _.if.4. 01 - - - ~ -  + V---~/- 3- - cos 2 

t i t !  

F4 ] cos 40j] + . . . ,  

(9) 

We have already referred to the chemical evidence 
for the relatively minor role played by the permanent 
dipoles in determining the stability of the nematic 
phase. We shall now make an independent estimate of 
the relative importance of the dipole-dipole term. 

Estimate of the permanent dipolar contribution 

Let A, B, C be the principal polarizabilities of a mol- 
ecule referred to its principal axes X'  Y 'Z ' .  Let X Y Z  be 
the fixed coordinate system, Z being so chosen as to 
coincide with the optic axis of the medium. If Ez and 
E x  represent the components of the electric vector of 
the incident light wave, then the induced moments 
Pz and Pz are given by 
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Pz = Ez (A cos 2 Z X '  + B cos 2 Z Y '  
+ C cos 2 Z Z ' ) ,  

Pz = Ex  (A cos 2 X X  t -1- B cos 2 X Y '  
+ C cos 2 X Z ' ) ,  

(10) 

where cos 2 Z X  '= sin 2 0 cos 2 ~b ¢ , 
COS 2 Z Y ' = s i n  2 0 sin 2 N,  
COS 2 Z Z  t=cOs 2 O, 
cos 2 X X ' =  (cos V cos ~0 cos O - s i n  V sin ~0) 2, 
cos 2 X Y ' =  ( - s i n  ~u cos ~0 cos O - c o s  V sin ~0) 2, 
COS 2 X Z  t= sin 2 0 cos 2 {0 , 

0, ~0, V being the Eulerian angles defining the orienta- 
tions of X'  Y ' Z '  with respect to X Y Z .  

To evaluate the polarizabilities Xz and Xz, it is 
necessary to average over all possible orientations 
taking into account the Bol tzmann factor involving the 
potential energy of the molecule given by (9). There- 
fore 

f2I 0 C,  e .  (- s'n0 d0d d  

Ez exp - sin 0 dO d(0 d v  
• 0 0 

Since the molecules are rotat ing about  their long 
axes V can take all possible values and similarly since 
the structure is symmetrical  about  the optic axis, ~0 can 
also take all possible values. Integrating over V and ~0 

( 2ht 2 4h2 8h22 8h 4 ) 
x~=x+(x" - x ' )  ~,-4-3 - +  --43 - +  9-9--6 .+  -1-65- + . '  

(11) 
where 

A + B  
X ± -  2 ' 
X, = C ,  

X, +2X_L 
X - -  3 ' 

hi = Udk T , 

h2 = Uz/k T , etc. 

Similarly, 

X,, - X .  { 2h[ 4h2 8h~ 8h, ) 
Xx=X . . . . .  2 \ 45 +---45- + 94-5- + 105 - +  . . . . .  

(12) 

The degree of  orientational order is given by (Chate- 
lain, 1955) 

X z - X z  
S - -  - -  , 

X, - X .  

hE 2h 2 4h22 4h 4 
.'. s =  ]-5- + 1 5 -  + 3 i 5  + 3 5 -  + " "  

(x  cos 
. . . . . . . . . . . . . . . . .  
V 2 k 2 T  2 15 

2 { [k;+_k 4 k'3 R"~ 
+1-13~ ~ ~ v 2 + Vs/f--v4-! 
+ ~ (k2+k4 k~ R")  

V2 Jr- V873 ~ V 4 cos2 01 
I 

"k ; ' "  R ..... 
2r- /~ (~z8]3 ~Z4-) C O S 4 0 1 - ] - ' ' ' }  - I - ' ' "  

rl 1 (272 273 _V2744_) , 
- Tav~---2 + ~- )2£ + vsf3- + (say) (13) 

neglecting higher order terms. The r 's  involve the mol- 
ecular distribution function and summations  over 
cos 0j and its powers. The temperature  variat ion of  s 
is determined by the variat ion of V (oc Q-l) and the 
27's. A correction could be effected for the variation of  
V from the thermal expansion measurements.  The 
fractional density change over the entire mesomorphic  
range is 2 -3%,  so that  we can without  appreciable 
error assume an average correction factor of  (M/Q) 3 for 
all the terms, M being the molecular weight. 

Hence, 

T1 T2 -]- 273 21- 274 
y = s  (M/o) 3~ - -T~ + T 

or  

dlny [_  2271T_2_ (T2 _]_ T3 _+_ T4) T_  1 
m -  d In---T - 

- 1 dr1 d(r2 -~- 2"3 -~- T4) ] + T 
d T  + d T  

x [rl T -2 + (rE + 273 + z4) T -1]-I . 

drl /dT and d(272 + T3 + 274)/dT, which are negative (since 
the , ' s  involve summations over powers of  cos 0j), 
may be expected to be small at the lowest temperatures 
ill the nematic range. Clearly, if the permanent  dipole 
term predominates,  i.e. (r2 + r3 + r4) is negligible com- 
pared with rl, the minimum value of  [ml is 2.0. On the 
other hand,  if el is negligible compared to the other 
terms, it is 1.0. The actual value of Ira] at the lowest 
temperatures for which the data  are available should 
give an estimate of  the relative importance of  the 
permanent  dipole term. 

Using the observed s (Chandrasekhar  & Madhu-  
sudana, 1969) and the density data for p-azoxyanisole 
(PAA) (Maier & Saupe, 1960) and p-azoxyphenetole  
(PAP) (Bauer & Bernamont ,  1936), we get 

P A A  m = - 1.04 
PAP m =  - 1.10. 

The fact that  [m[ is only slightly greater than 1.0 for 
both cases shows that  dispersion and repulsion forces 
predominate  in both  compounds.  (The induction 
energy has the same form as the dipole-dipole part  of  
the dispersion energy, though its contr ibut ion may be 
expected to be small.) The result that  the permanent  
dipole forces do not  make an impor tant  contr ibut ion is 
in general agreement with the observations of  Gray  
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(1962) and of Maier & Saupe (1959) regarding the 
stability of the nematic mesophase. Thus 

Ui'~'__ - V - 3  (UoAr-u2 c o s  2 04AI-/,/4 c o s  4 0 4 - J i - . . . ) .  (14) 

The mean field approximation 

For the purpose of developing a theory of long-range 
orientational order we shall assume a mean field ap- 
proximation, and express the summations in the coef- 
ficients Uo, U2 etc. of (9) in terms of the mean values 
cos 2 0, cos 4 0 etc.; in other words, we shall neglect 
local variations and short range ordering. 

U4j" given by (8) is symmetrical in i and j, so that the 
coefficients Uo, uz etc., in (14) can be expressed as 

R0 = WOO "t-- W02 COS 2 0 -~- W04 COS 4 0 -Jr" • • • 

U 2 =  W20-~- W22 COS 2 0At- W24 COS 4 0-1- . . . 

U4 = W40 -JI- W42 COS 2 0 "t- W44 C-O; ~--0 -1- • • • 

etc., 

where W02 = W20 , W04 = W40 , etc., or in general W m n  = W n m .  

We may rewrite (14) in the form 

U ~ = - V - 3 [ A (  3c°s20-12 + 3 c°s2 04-1 ) 2  

+B ( 3c°s20-12 3c°sZ04-1)2 

+ C (  5 c°s4 0 - 1 4  + 5 c°s4 0 ' -  1 ) 4  

D ( 3 cos z 0 - 1  . 5 cos 4 0 4 - -  1 + 
\ 2 4 

m 3 cos 2 04- 1 5 cos 4 O -  1 
) 2 4 

+ E (  7 c°s6 0 -  1 6  + 7 c°s6 04-1 ) ] 6  - (15) 

neglecting an orientation-independent term, as well as 
terms involving higher powers of cos 0. 

We shall now suppose that A, B, . . . ,  E are inde- 
pendent of volume and temperature and thus dis- 
regard effects due to variations in the molecular 
distribution function. To this approximation, A,B,.  
. . ,  E may be taken to have the same values in the 
liquid crystalline and liquid phases. In the isotropic 
liquid 

3 cos z O -  1 5 cos 4 O - -  1 7 cos 6 O -  1 
2 4 6 

Therefore, in order that U4 given by (15) may vanish in 
the liquid phase, we may conveniently take A = C =  
E =  0. The potential energy may then be written as 

[ 3x, -I ( 5 -1 
U t = - V - 3  B s l ~  ....... +D s l -  4 +s2 

= - V-3(a ' x~ + b'x 2 + e') (say), 

where 

3x, 1 )] 
(16) 

X = COS 0 ,  

Xi  = COS 0 i ,  

3x 2 - 1 
Ss- 2 ' 

5x 4 -  1 
s2-  4 ' 

a'= ¼Dsl , 

b' = ~(Bsx + Ds2) 

and e' = - k[2Bsl + O(Sl + 2s2)]. 

The new order parameter s2 that we have introduced, 
like sl, varies from 1 to 0 over the range from perfect 
ordering to complete disorder. The experimental 
methods used so far lead to an estimate of sl only and 
not of Sz. 

Thermodynamic properties of the ordered system 

We shall now derive expressions for the thermody- 
namic properties of the ordered system relative to those 
of the completely disordered one on the basis of (16). 

Entropy and free energy 
The average values of x 2 and x~ are 

/s' 2 exp ( -  Ui/kT)dx ~ exp ( -  UffkT)dxi X 2 ~ Xj 
0 

= oXt exp(ax~+bx~)dxtl  oeXp(a~ +bx~)dxi,  

(17) 
and !1 

x~ = o xt exp ( a ~  +bx~)dxt exp(ax 4 +bxZt)dxi 
tO 

(18) 

a' b' c' 
where a=  k-~V- 5 , b= ~--20~5 and c= k-lri/-~ ; c cancels 

out in the numerator and denominator of (17) and (1 8). 
Since (16) represents the mutual energy of interac- 

tion of a molecule with its neighbours, the internal 
energy per mole due to orientational order is evidently 

_ _  m m 

U , = ½ N U , = - ½ N k T ( a x  4 +bx  2 +c) ,  (19) 

where N is Avogadro's number. The partition function 
for a single molecule 

S' 
f~= exp ( a ~  + bx~ + c)dxt, 

0 

so that the contribution of the orientational order to 
the entropy is given by 
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f I (ax 4 +bx 2 +c) exp (ax~ +bx2)dx, 
S~=-Nk  0 

f exp (a~ + bx 2 )dx~ 
0 

- log  ,'0 Il exp (ax4 +bx2 +c)dxi] 

(20) 
The component of the Helmholtz free energy due to 
order 

Fs = Us-  TSs 

=NgT [½(a~ +bx-~ -¢) 

- log  IloeXp (a~ +bx2)dx~] . (21) 

The equilibrium conditions 
The thermodynamic condition for the equilibrium 

of the ordered phase is 

--~ l v,r  ~ Os2 ! v,~ 
= 0 .  

_ _  
Osl ! V,T 

N B v, (3s, -3;, +1) 
D 0xt z +½) 

+ ~- ( 3s2 ~ 25- 

m 

D Ox~l _3~-2 " c3s 2 0s2] 
+ -4- s' + , ] 

Clearly (22) vanishes when 

• ( 2 2 )  

and 

x~ - 2sl + 1 - x  ~ (23) 
3 

_ 4s2+ 1 _ ~  (24) 
5 

( OFs ~ vanishes Similarly, it can be proved that \ -~z !  V,T 

under the same circumstances• Therefore, (23) and (24) 
represent the two conditions of equilibrium of the 
ordered system. Hereafter the suffix i in x~, ~ etc., will 
be omitted. 

Volume change and latent heat of transition 
The Gibbs free energy of the nematic phase at Tc 

may be written as 

Gn=Fz(V1, Tc)+ Fs(Vb Te)+ PcV1, 

where Ft is the component of the Helmholtz free energy 
due to the isotropic liquid (or the completely dis- 
ordered system) and Fs the component due to order, 
and V1 the molar volume of the liquid crystal at Te. 
For the isotropic liquid we have similarly 

Gt=Fl(Zz, To)+ PcV2 

where Vz is the molar volume of the liquid at To. 
Therefore, 

Gn-  Gt= Fz( V1, Te)-  Ft( V2, Te) 
+Fs(Vl, Tc)-PcAV,  (25) 

where A V= V2-V1 is the change of volume at Te. 

Further 

~ v~ / aFz X S v~ d V= Pzd V . Fl(Vl, T~)-F,(V~,T~)=-Iv,[-~-V}~ v, 

Noting that the pressure of the liquid at (V2, Te) is Pc, 
we may put 

Pz(V, To) = P c +  \ ~  l Tc 

Since 

(v- v2). 

OPz ] = 1 

where fl is the isothermal compressibility of the liquid 
at Te, 

v1PMV=~v,~ flVz ] dV 

(3v)~ 
= PeA V+ 

2pv2 

= PeA V-½AP.  A V, (26) 

where AP = Pc-  Pz( V1, Te) . 

But we know that for the nematic phase 

Pe=PI(V1, To)+ Ps(V1, Tc), (27) 

where Ps is the contribution of the orientational order 
to the pressure, so that from (25), (26) and (27), 

[c3F8] AV 
Gn-  Gt = Fs + \--~--V-! Tc - 2 "  

Since the Gibbs free energy does not change at the 
transition, 

A V = - 2  ~ ~'c" 

OFn] _ {OFs] + [eFs] [esl] 
~VIT- -  \OVIs ,T  \OS1IV, T \c~VIT 

( ~3Fs ] ..... [ -O-sz ~ (29) 
+ \-b-S-~2] v,T \ OV! T, 
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where s stands for the orientational order. As we have 
seen earlier, the equilibrium of the phase requires that 

SFs] = [ 8F8 
as, ] v, T \8~2 ! V, ~ = O . 

Hence, from (21) 

( e r , ]  = - r  ? %  t as:~ 
av!~,e ~av],,e ~ avl , ,~ 

It is easily shown from (20) that 

= 0  --~1,,~ 
Therefore, from (19) 

~ Cqg ] T ._= 3 NkT( " 

Substituting in (28) 

A V  
V 

Cv.( T) = Cv,( T) + Cv.( T) , 

where Cv,(T) is the contribution due to order and 
C~t(T ) that due to the completely disordered system. 

C,,,(T)= v -~-7; + -} a a T J v  (32) 

from (19). The specific heat at constant pressure of the 
nematic phase is 

Cpn= Cvn+ °~2 VT 
. 

where fl is the isothermal compressibility. Using a 
similar expression for the liquid phase 

[~ZV-'~ ] .  (33) 

In order to evaluate fl theoretically, we assume that 
the pressures due to order and disorder are additive, 
so that to a good approximation 

b _ _  21o llexp(ax4+bx2,ax-{ (5 +l,+  (3x2+1,} ....... Since 

b (3E~- 1)} ~ { 5  (5x--/- 1) + ~ 

(30) 

The heat of transition from the nematic to the liquid 
phase is given by 

H =  Te[&(V2, Te)-Sn(V1,  Tc)] 
= T c [ & ( V 2 ,  Tc) - St( V1, Tc) 
+ St(V~, T c ) - S n ( V b  Tc)] 

[I v2 [8Sz] dV-Ss(V1,Tc)  ] . 
= Tc \ -o-T]  Tc V1 

where e is the coefficient of thermal expansion and fl 
the isothermal compressibility of the liquid at To. 
Therefore 

H=Tc [-fi AV-&(V,,  Te)] (31) 

assuming that e/fl is sensibly constant over the range 
A V. Both a and fl are known to exhibit a very slight 
increase with increase of volume (see, e.g., Bridgman, 
1958) but as we are concerned here with volume 
changes of the order of a fraction of a per cent, we may 
justifiably neglect the variation of o~/fl. 

Specific heat and compressibility 
The specific heat at constant volume of the nematic 

phase may be written as 

(34) 

s = -  v \ a v  ] ~, - -8-V] ~ ' 

we obtain from (29), 

(-l~-)s=3gkZ[2 b{ [ ~Sl ~ 

+ -}a~[-OV) T-- • 

Differentiating (17) and (18) with respect to volume 
it can be shown that 

(OS,~ [2 -- a (x6_x4 22 ) bB 
8 V] T sl " BSl -t- Ds2 

__ __ [ 0S2 ~ 
X { X4--(X2) 2 } ] 31- \ ~ V ] T 

[ bD { x4_(x2)2 }] × 
t -  -~s, + Ds2 

_ 3 [a(x6_x4 x2 ) + b{ ~-(x--i)z}] 
V 

and 

( as,~ 

(36) 

a bB (x6_x4" xZ ) ] 
- s~- { ~ _  (~)2} BSl + DS2 

1 + ¢  s1+, 2 (x6_x,  j 

= -  _3 [a{xS_(x--4)2} +b (x6-x4.x2)]. (37) 
V 
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These equations can be solved for (c~sl/OV)f and 
C~Sz/3V)T. Differentiating (17) and (18) with respect to 
temperature, we get a similar pair of equations from 
which (Os~/OT)v and (3sz/3T)v can be evaluated. Sub- 
stituting these quantities in (32), (35) and using (33) and 
(34) the specific heat at constant pressure and the iso- 
thermal compressibility of the nematic phase can be 
evaluated theoretically provided the contributions due 
to disorder are known. 

Application of the theory to p-azoxyanisole 
and p-azoxyphenetole. 

PAA and PAP are the only two compounds for which 
all the relevant experimental data are available for a 
detailed comparison with the theory, though, even for 
these two cases, the data reported by different authors 
do not agree very well. We shall now discuss the ap- 
plication of the theory to these compounds. 

The following integrals were necessary for the theo- 
retical calculations: 

0"8 

0"7 

0"6 

0"5 

0"4 

0"3 
I 

i I I I 
-40 -30 T-To -20 -10 

Fig. 1. The long range orientational order parameter s l as a 
function of temperature in p-azoxyanisole and p-azoxyphen- 
etole, theory; • experimental data of Glarum & 
Marshall (1966); A data of Saupe (1968); © data of Chan- 
drasekhar & Madhusudana (1969). 

800 

PAP o / ~  
"~ 700 
o oO ~ o 
E o o~% ~ /  %,., 

~ __ 2_o_._o_ o..o 
• ~ 600 . . . . . . . . .  - }  

d 

_ _ , . , _ ~  oo o Q_o..~ 
500 

- 3 ;  -210 -10 ~) 10 
T-To 

Fig. 2. Specific heat at constant pressure ofp-azoxyanisole and 
p-azoxyphenetole as a function of temperature. - -  the- 
ory; - - -  contribution due to disorder extrapolated from 
the data for normal liquid; © data of Arnold (1964). 

I loXZn exp (ax4.-b bx2)dx , n = 0 , 1 , 2 , 3 , 4 .  

Applying Simpson's method, the five integrals were 
evaluated numerically with the aid of a computer for 
ranges of values of a and b in steps of 0.1. A suitable 
interpolation procedure was employed for inter- 
mediate values when required. 

Using the density data of Maier & Saupe (1960) for 
PAA, and those of Bauer & Bernamont (1936) for 
PAP converted to an absolute scale (see Chandra- 
sekhar & Madhusudana, 1969), the theoretical curves 
for sx were calculated using the equilibrium conditions 
(23) and (24). The constants of the potential function 
which give good values of A V/V and s~ (at one temper- 
ature) are given below: 

PAA PAP 
B x 106 (erg.cm 9) 4.5448 5.2502 

D x 106 (erg.cm 9) - 1.0460 0.0675 

A V/V (theory) 0.0035 0-0061 

A V/V (observed) 0.0035 0.0060 

The theoretical curves for sl along with recent exper- 
imental values are shown in Fig. 1. The agreement can 
be seen to be satisfactory. 

To evaluate H, Cp and/7 from (31), (33) and (34) we 
require e, C~ and fl of the liquid phase. The latter 
quantities exhibit anomalous behaviour just above the 
transition point. The values decrease rapidly at first as 
the temperature rises, and then gradually become 
linear functions of temperature as in normal liquids. 
An extrapolation of these quantities to lower temper- 
atures from the linear region is possible. The extra- 
polated values correspond to the contributions of the 
completely disordered system in our theory. 

H, C~ and fl so calculated are found to differ con- 
siderably from the experimental values; in particular 
H and p are as much as 60-80% higher than the ob- 
served data. 

The reason for the discrepancy between theory and 
experiment is readily understood. We have worked out 
the orientational potential energy of a single molecule 
in the field due to its surrounding medium disregarding 
entirely the correlations between neighbouring mol- 
ecules, which undoubtedly exist not only in the liquid 
crystal but also in the liquid. As far as the 'excess' 
properties associated with long-range order are con- 
cerned, a simple method of taking into account the 
influence of local ordering is to reduce the effective 
number of independent molecular entities, i.e. to re- 
place Avogadro's number N by N/n, where n is a 
numerical factor. It is seen from (17), (23), (24) and 
(30) that this does not affect the calculations of sl and 
A V/V, but it does alter the latent heat of transition, 
specific heat and compressibility given by (31), (32) and 
(35) respectively. 
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The results for H are set out below. 

Theoretical Experimental 
H H 

n (joule.mole -1) (joule.mole -1) 
PAA 1 1230 690(~), 740oi), 780mi), 

760(iv) 
2.7 690 

PAP 1 2610 
2.3 1580 

1500(2) 

(i) Arnold (1964); (ii) Barrall, Porter & Johnson 
(1967); (iii) Sakevich (1967); (iv) Chow & Martire 
(1969). 

The theoretical curves for the specific heat and com- 
pressibility are shown in Figs. 2 and 3. The dashed 
lines are the contributions due to disorder obtained by 
extrapolating the values for the normal liquid. The val- 
ues of n have been chosen to give the best overall fit 
for H, C~ and fl; H and/? are very sensitive to n, but not 
C:o because an increase of n decreases Cv as well as ft. 

Thus, using just three parameters (B, D and n) for 
each compound the theory leads to values of sl, C~o, 
A V/V and H in good quantitative agreement with 
observations. The agreement for fl is also reasonably 
satisfactory, but it is evident that the observed varia- 
tion of fl with temperature is somewhat faster than 
given by theory. Recalling that fl involves the second 
differential of the energy with respect to volume, the 
difference in the rate of variation is at least partly due 
to the approximation made that the potential energy 
has an average V-3 dependence. 

The magnetic birefringence of the liquid phase 

The factor n may be interpreted as the effective number 
of perfectly aligned molecules in a cluster. The magnetic 
birefringence of the liquid provides a means of esti- 
mating n approximately. If r/~ and r/± are the principal 
diamagnetic susceptibilities of the molecule and Z, and 
Z± its principal optical polarizabilities, the corre- 
sponding values for the cluster may be taken to be 
nr/,, nr/± and nz, ,  nZa. Applying the standard theory, 
(see e.g., Beams, 1932) it is readily shown that the 
Cot ton-Mouton constant 

ACt 2rcvn (Ct232)2 
C -  2 H  2 - 15kTc t2  . . . .  ( r / H - r / ± ) ( Z t ' - Z ± ) '  

(38) 

where v is the number of molecules/cm 3 and ct the re- 
fractive index of the liquid in the absence of the magne- 
tic field. 

The magnetic birefringence of PAA in the liquid 
phase has been measured at different temperatures re- 
lative to that of nitrobenzene by Zadoc-Kahn (1936). 
At the highest temperature (To + 52 °), where the mag- 
netic behaviour is that of a normal liquid, C is 2.7 
times the value for nitrobenzene for 25780. The princi- 
pal diamagnetic susceptibilities of the crystal, which 

150 

PAP 

100-  eo 

o 50 

~. PAA 

2 
e ~  

100 

_ °_o.e- -e--o" '°-  

5O 

-2b -1'0 ; lb 
T-T, 

Fig. 3. Isothermal compressibility of p-azoxyanisole and p- 
azoxyphenetole. - -  theory; - - -  contribution due to 
disorder extrapolated from the data for the normal liquid; 
O data of Gabrielli & Verdini (1955); /x data of Hoyer & 
Nolle (1956); • data of Kapustin & Bykova (1966) and 
Kapustin (1970). 

have been determined by Foex (1933), give ( r /n- r /a )=  
104× 10 -30 cm 3. Substituting C for nitrobenzene= 
235 × 10 -14 cm-l.gauss -2 and using the other relevant 
data (see Chandrasekhar & Madhusudana, 1969) 
n turns out to be 4.0. 

It is gratifying to note that n is of the same order as 
that estimated from the thermodynamic theory. 

We are very much indebted to Dr A. P. Kapustin, 
Institute of Crystallography, Moscow, for the unpub- 
lished ultrasonic velocity data on PAP; to the Director, 
Tata Institute of Fundamental Research, Bombay, for 
the computer facilities. One of us (NVM) is grateful to 
CSIR (India) for a Senior Research Fellowship. 
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The Application of Non-Systematic Many-Beam Dynamic Effects 
to Structure-Factor Determination 
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A method for utilizing non-systematic many-beam dynamic effects for determination of accurate rela- 
tions between Fourier potentials is described. The effects which are used can be understood and de- 
scribed in terms of three-beam interactions; although quantitative evaluation is based on more inter- 
acting beams. The effects are most readily observed in Kikuchi patterns; experimental patterns from 
silicon are used as an example. 

Introduction 

It has been shown theoretically and experimentally by 
Uyeda and coworkers (Uyeda, 1968; Watanabe, Uyeda 
& Kogiso, 1968), that the contrast of the second-order 
Kikuchi line may vanish for a particular value of the 
acceleration voltage. This effect is due to variations in 
multiple-beam interactions with electron mass, and can 
be utilized to obtain very accurate relations between 
structure factors, as shown by Watanabe, Uyeda & 
Fukuhara (1968). The method does in a very simple 
way exploit dynamic effects for structure factor deter- 
mination, but is limited to systematic reflexions and is 
dependent on high-voltage electron diffraction. 

In a previous paper the present authors (Gjonnes & 
Hoier, 1969) have studied enhancement and reduction 
of Kikuchi-line contrast, with particular emphasis on 
three-beam interactions. It was shown that a variety of 

contrast anomalies could be explained in terms of 
simple rules derived from three-beam considerations, 
viz, if the product P =  UgUnUg-n of the Fourier poten- 
tials involved is positive, a weak beam, g, which is ex- 
cited simultaneously with a strong beam, h, will be 
reduced in intensity relative to its two-beam value when 
the excitation error, (~, of the strong beam is positive, 
and increased in intensity when (h is negative. When P 
is negative, the effects are reversed with respect to the 
sign of (h. Inclusion of more beams in the calculations 
will not as a rule alter the qualitative features. From 
this viewpoint the Uyeda-Watanabe effect can be seen 
as a special case of reduced intensity in a weak beam 
in a systematic, essentially three beam case, the excita- 
tion error of the strong beam being positive and con- 
stant along the Kikuchi line 2h. 

It was therefore found desirable to investigate inten- 
sity reduction in general, i.e. non-systematic, cases in 


